[20]
파이올렛 | 12:57 | 조회 0 |루리웹
[6]
LOVE | 12:53 | 조회 378 |SLR클럽
[23]
맬러뮤트보이 | 12:56 | 조회 600 |SLR클럽
[10]
루리웹-97979797 | 12:43 | 조회 0 |루리웹
[7]
쿠르스와로 | 12:52 | 조회 0 |루리웹
[1]
루리웹-7501934591 | 12:52 | 조회 0 |루리웹
[1]
쿠르스와로 | 12:50 | 조회 0 |루리웹
[3]
루리웹-8514721844 | 12:51 | 조회 0 |루리웹
[8]
안유댕 | 12:51 | 조회 0 |루리웹
[2]
MD브루노 | 12:51 | 조회 0 |루리웹
[10]
신 사 | 12:49 | 조회 0 |루리웹
[6]
지구별외계인 | 12:49 | 조회 0 |루리웹
[5]
Hybrid Theory | 12:45 | 조회 0 |루리웹
[2]
빡빡이아저씨 | 12:44 | 조회 0 |루리웹
[12]
하겐다즈아이스크림 만만세 | 12:54 | 조회 0 |루리웹
전 못 풉니다.
일단 읽을 수 도 없음
분모, 분자 모두 무한대로 가니 간단히 0
그건이미문제에있고 증명하라는거아닌가요?
0ㄷㄷㄷ
제일 쉬운 수학문제의 류가....임의수가 들어간 문제죠....
This image shows a math problem written in Korean. The problem asks to prove that for any integer n, the limit of frac{x^n}{e^x} as x approaches infinity is 0.
Here's the problem and a solution:
문제 (Problem)
임의의 정수 n에 대하여 lim_{xtoinfty} frac{x^n}{e^x} = 0임을 보여라.
(Prove that for any integer n, lim_{xtoinfty} frac{x^n}{e^x} = 0.)
풀이 (Solution)
To solve this, we can use L'H?pital's Rule. This rule is applicable when we have an indeterminate form like frac{infty}{infty} or frac{0}{0}. As x to infty, both x^n and e^x approach infinity, so we have an indeterminate form of type frac{infty}{infty}.
Step 1: Differentiate the numerator and the denominator.
frac{d}{dx}(x^n) = nx^{n-1}
frac{d}{dx}(e^x) = e^x
Applying L'H?pital's Rule once:
lim_{xtoinfty} frac{x^n}{e^x} = lim_{xtoinfty} frac{nx^{n-1}}{e^x}
Step 2: Repeat the process.
We can see that if n is a positive integer, we still have an indeterminate form of type frac{infty}{infty}. We can apply L'H?pital's Rule repeatedly, n times.
After the first application, we get: lim_{xtoinfty} frac{nx^{n-1}}{e^x}
After the second application, we get: lim_{xtoinfty} frac{n(n-1)x^{n-2}}{e^x}
...
After the n-th application, the numerator becomes a constant:
lim_{xtoinfty} frac{n(n-1)(n-2)cdots(1)x^0}{e^x} = lim_{xtoinfty} frac{n!}{e^x}
Step 3: Evaluate the final limit.
As x to infty, the denominator e^x grows infinitely large, while the numerator n! is a constant.
Therefore,
lim_{xtoinfty} frac{n!}{e^x} = frac{n!}{infty} = 0
This proves the statement for any positive integer n.
Note on negative integers:
If n is a negative integer, let n = -m where m is a positive integer.
The limit becomes:
lim_{xtoinfty} frac{x^{-m}}{e^x} = lim_{xtoinfty} frac{1}{x^m e^x}
As x to infty, both x^m and e^x approach infinity. Their product, x^m e^x, also approaches infinity.
Therefore,
lim_{xtoinfty} frac{1}{x^m e^x} = frac{1}{infty} = 0
Conclusion:
In all cases (positive, negative, or zero for n), the limit is 0. This shows that the exponential function e^x grows faster than any polynomial function x^n.
GPT가... 이렇데요...
