[14]
[X100]Dreamer | 25/09/03 | 조회 507 |SLR클럽
[6]
52w | 25/09/03 | 조회 1192 |SLR클럽
[6]
InterG | 25/09/03 | 조회 798 |SLR클럽
[18]
[X100]Dreamer | 25/09/03 | 조회 1921 |SLR클럽
[15]
California.T | 25/09/03 | 조회 1311 |SLR클럽
[6]
52w | 25/09/03 | 조회 1703 |SLR클럽
[12]
52w | 25/09/03 | 조회 1761 |SLR클럽
[27]
52w | 25/09/03 | 조회 857 |SLR클럽
[7]
52w | 25/09/03 | 조회 614 |SLR클럽
[23]
연세대가주아 | 25/09/03 | 조회 585 |SLR클럽
[10]
배경화면 | 25/09/03 | 조회 862 |SLR클럽
[8]
SLR회원 | 25/09/03 | 조회 723 |SLR클럽
[7]
디자인전문 | 25/09/03 | 조회 638 |SLR클럽
[13]
[α]young™ | 25/09/03 | 조회 1372 |SLR클럽
[11]
ㄷㄷㄷ | 25/09/03 | 조회 1248 |SLR클럽
전 못 풉니다.
일단 읽을 수 도 없음
분모, 분자 모두 무한대로 가니 간단히 0
그건이미문제에있고 증명하라는거아닌가요?
0ㄷㄷㄷ
제일 쉬운 수학문제의 류가....임의수가 들어간 문제죠....
This image shows a math problem written in Korean. The problem asks to prove that for any integer n, the limit of frac{x^n}{e^x} as x approaches infinity is 0.
Here's the problem and a solution:
문제 (Problem)
임의의 정수 n에 대하여 lim_{xtoinfty} frac{x^n}{e^x} = 0임을 보여라.
(Prove that for any integer n, lim_{xtoinfty} frac{x^n}{e^x} = 0.)
풀이 (Solution)
To solve this, we can use L'H?pital's Rule. This rule is applicable when we have an indeterminate form like frac{infty}{infty} or frac{0}{0}. As x to infty, both x^n and e^x approach infinity, so we have an indeterminate form of type frac{infty}{infty}.
Step 1: Differentiate the numerator and the denominator.
frac{d}{dx}(x^n) = nx^{n-1}
frac{d}{dx}(e^x) = e^x
Applying L'H?pital's Rule once:
lim_{xtoinfty} frac{x^n}{e^x} = lim_{xtoinfty} frac{nx^{n-1}}{e^x}
Step 2: Repeat the process.
We can see that if n is a positive integer, we still have an indeterminate form of type frac{infty}{infty}. We can apply L'H?pital's Rule repeatedly, n times.
After the first application, we get: lim_{xtoinfty} frac{nx^{n-1}}{e^x}
After the second application, we get: lim_{xtoinfty} frac{n(n-1)x^{n-2}}{e^x}
...
After the n-th application, the numerator becomes a constant:
lim_{xtoinfty} frac{n(n-1)(n-2)cdots(1)x^0}{e^x} = lim_{xtoinfty} frac{n!}{e^x}
Step 3: Evaluate the final limit.
As x to infty, the denominator e^x grows infinitely large, while the numerator n! is a constant.
Therefore,
lim_{xtoinfty} frac{n!}{e^x} = frac{n!}{infty} = 0
This proves the statement for any positive integer n.
Note on negative integers:
If n is a negative integer, let n = -m where m is a positive integer.
The limit becomes:
lim_{xtoinfty} frac{x^{-m}}{e^x} = lim_{xtoinfty} frac{1}{x^m e^x}
As x to infty, both x^m and e^x approach infinity. Their product, x^m e^x, also approaches infinity.
Therefore,
lim_{xtoinfty} frac{1}{x^m e^x} = frac{1}{infty} = 0
Conclusion:
In all cases (positive, negative, or zero for n), the limit is 0. This shows that the exponential function e^x grows faster than any polynomial function x^n.
GPT가... 이렇데요...
