[3]
레몬향기* | 07:49 | 조회 143 |SLR클럽
[2]
로키382 | 07:40 | 조회 282 |SLR클럽
[4]
보라색빤스 | 07:44 | 조회 304 |SLR클럽
[3]
[AZE]공돌삼촌 | 07:34 | 조회 289 |SLR클럽
[8]
빛의모임 | 07:22 | 조회 464 |SLR클럽
[0]
잠실반니 | 07:12 | 조회 427 |SLR클럽
[1]
파티는끝났다 | 07:16 | 조회 397 |SLR클럽
[0]
((|))양파 | 07:07 | 조회 193 |SLR클럽
[3]
((|))양파 | 07:01 | 조회 241 |SLR클럽
[0]
보라색빤스 | 06:59 | 조회 377 |SLR클럽
[6]
Copilot2 | 06:59 | 조회 316 |SLR클럽
[0]
투데이올데이 | 06:30 | 조회 241 |SLR클럽
[2]
(주)검찰 | 06:15 | 조회 617 |SLR클럽
[1]
넥슨은뱀을뿌려라 | 06:15 | 조회 447 |SLR클럽
[1]
Film KING | 06:00 | 조회 344 |SLR클럽
전 못 풉니다.
일단 읽을 수 도 없음
분모, 분자 모두 무한대로 가니 간단히 0
그건이미문제에있고 증명하라는거아닌가요?
0ㄷㄷㄷ
제일 쉬운 수학문제의 류가....임의수가 들어간 문제죠....
This image shows a math problem written in Korean. The problem asks to prove that for any integer n, the limit of frac{x^n}{e^x} as x approaches infinity is 0.
Here's the problem and a solution:
문제 (Problem)
임의의 정수 n에 대하여 lim_{xtoinfty} frac{x^n}{e^x} = 0임을 보여라.
(Prove that for any integer n, lim_{xtoinfty} frac{x^n}{e^x} = 0.)
풀이 (Solution)
To solve this, we can use L'H?pital's Rule. This rule is applicable when we have an indeterminate form like frac{infty}{infty} or frac{0}{0}. As x to infty, both x^n and e^x approach infinity, so we have an indeterminate form of type frac{infty}{infty}.
Step 1: Differentiate the numerator and the denominator.
frac{d}{dx}(x^n) = nx^{n-1}
frac{d}{dx}(e^x) = e^x
Applying L'H?pital's Rule once:
lim_{xtoinfty} frac{x^n}{e^x} = lim_{xtoinfty} frac{nx^{n-1}}{e^x}
Step 2: Repeat the process.
We can see that if n is a positive integer, we still have an indeterminate form of type frac{infty}{infty}. We can apply L'H?pital's Rule repeatedly, n times.
After the first application, we get: lim_{xtoinfty} frac{nx^{n-1}}{e^x}
After the second application, we get: lim_{xtoinfty} frac{n(n-1)x^{n-2}}{e^x}
...
After the n-th application, the numerator becomes a constant:
lim_{xtoinfty} frac{n(n-1)(n-2)cdots(1)x^0}{e^x} = lim_{xtoinfty} frac{n!}{e^x}
Step 3: Evaluate the final limit.
As x to infty, the denominator e^x grows infinitely large, while the numerator n! is a constant.
Therefore,
lim_{xtoinfty} frac{n!}{e^x} = frac{n!}{infty} = 0
This proves the statement for any positive integer n.
Note on negative integers:
If n is a negative integer, let n = -m where m is a positive integer.
The limit becomes:
lim_{xtoinfty} frac{x^{-m}}{e^x} = lim_{xtoinfty} frac{1}{x^m e^x}
As x to infty, both x^m and e^x approach infinity. Their product, x^m e^x, also approaches infinity.
Therefore,
lim_{xtoinfty} frac{1}{x^m e^x} = frac{1}{infty} = 0
Conclusion:
In all cases (positive, negative, or zero for n), the limit is 0. This shows that the exponential function e^x grows faster than any polynomial function x^n.
GPT가... 이렇데요...
